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Recurrence of the Eigenstates of a SchrOdinger 
Operator with Automatic Potential 
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We consider the Schr6dinger eigenvalue problem in the discrete case with a 
potential assuming two values distributed according to the automatic sequence 
of Prouhet-Thue-Morse. We show that there are no localized states and that 
the generalized eigenvectors are recurrent on a geometrical set stemming from 
the hierarchical nature of the potential. 
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1. I N T R O D U C T I O N  

We study a one-dimensional  discrete Schr6dinger opera tor  whose potential 
assumes two values distributed according to the Prouhet  T h u e - M o r s e  
sequence. Various such one-dimensional  models have been investigated, 
namely with r andom or almost  periodic potential. In addition, much work 
has been devoted to studying the Schr6dinger operator  with a potential 
generated by the Fibonacci  sequence, which can be seen, as well as a 
quasiperiodic sequence, as a sequence generated by a substitution (as is the 
P r o u h e t - T h u e - M o r s e  one). The discovery of quasicrystals ~1) gives physical 
grounds  for the study of  such a potential which can be thought  of as 
modeling 1D quasicrystals. With respect to the Fourier  transform, the 
Fibonacci  and the P r o u h e t - T h u e - M o r s e  sequences have very different 
properties; indeed, the latter has a singular cont inuous measure as Fourier  
transform. One problem is to determine whether such operators  have 
localized or  extended eigenstates. In  the Fibonacci  case, K o h m o t o  et  al., in 
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ref. 2 and subsequent articles, pointed out certain nonlocalized states which 
they called critical and which have been rigorously worked out by Siito. (3) 
The present work completes previous articles. (4'5) In ref. 5 it is rigorously 
proved that, in this case, there exist states extended in a very strong way: 
they assume any of their values on an automatic set of integers of positive 
density. But these states are associated with very special points of the spec- 
trum. In this work, we show that the operator occurring in the Prouhet-  
Thue-Morse case has no eigenvalue in 12(Z), which means that there are 
no localized states (the opposite of the disordered case). Furthermore, 
our proof shows that any eigenstate is not too small on a geometric 
progression. 

2. NOTATIONS A N D  RESULTS 

Let us consider the following iterative construction: 

011 

011011001 

011010011001011011001011001101001 

where each line is obtained from the preceding one by replacing l's by 1001 
and 0's by 0110. Lines are numbered starting from 0. Elements of the nth 
line are numbered from - 4  n to 4 n - l ,  so that the terms of rank 0 
immediately follow the vertical line. It is to be noticed that each line can 
be obtained by adding prefixes and suffixes to the preceding one. Therefore, 
this construction converges toward a sequence { @ j~z  of zeros and ones. 

On the other hand, the nth line is the first half of the word c~ 2n+ 1(0), 
shifted leftward by 4" positions, where ~r is the Thue-Morse substitution. In 
other words, the sequence e is one of those which are considered in ref. 5. 

It results from its construction that, for any n ~> 0, the sequence e has 
the following structure: 

.,.G2n+l(O)lG2n+l(l)ffRn+l(o)GRn+l(o)o'2n+l(1)G2n+l(o)... (1) 

Now, let q0 and q~ be two distinct real numbers and H the following 
Schr6dinger operator: 

(HX)n=Xn+l+Xn l-q~ox, (2) 

acting on the Hilbert space 12(Z). 
The spectrum of this operator has been studied in ref. 5 and numerical 

evidence has been given that it is of zero Lebesgue measure. In addition, 
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it has been rigorously proved that, for a dense subset of points in the 
spectrum, the corresponding states are extended. As a matter of fact, these 
states not only do not vanish at infinity, but merely assume their maximum 
value on a relatively dense set of integers. In this work, we continue the 
study of the localization of modes. We prove that they all are extended. 
More precisely, we prove the following result: 

T h e o r e m .  The operator H has no eigenvectors in the space co(Z) of 
sequences vanishing at infinity. 

This result and its proof are to be put together with ref. 6. 

Proof. The proof will proceed by reductio ad absurdum. So, we 
suppose that we have a real number 2 and a nonzero sequence {Xn}n~ z 
such that lim, ~ ~ x n = 0 and 

2 x n = x n + l + x ~ _ l - q ~ x ~  for n e Z  (3) 

This recursion relation can also be written in the following way: 

x ,  O / k x , _  1/ 

or, equivalently, 

un+ 1 = M~nu, = M(n)uo (4) 

with obvious notations. 
Then by (1) we have 

U22n+l ~- m(22"+1)Uo and Uo = M(22"+l)u22,+l (5) 

The assumption that x is a nonzero sequence exactly means u 0 ~ 0. 
Let us define two sequences of matrices A n and B n by recursion: 

A o = Mj M 0 (6) 

Bo= MoM1 (7) 

An+ l = AnBnBnAn (8) 

B,+~=BnAnAnBn for n>~0 (9) 

Then A n = M (22n~1). 
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Thus, if u. goes to zero at infinity, we have 

lira u22~ lim Anuo= 0  
n ~ o o  n ~ o o  

lira u_22.+1= lira A 2 l u o = 0  
n ~ c ~  n ~ c c  

lira u22.+2= lim B ~ A n u o = O  
n ~ o ~  n ~ o ~  

lira u522.+~= lim B n A n B ] A n u o = O  
n ~  n ~ o o  

(10) 

(11) 

(12) 

(13) 

We will prove that Eqs. 
some properties of the sequences An and B.. 

P r o p o s i t i o n  1. Let us set t n = T r A n ; t h e n  

t n = Tr B n 

tn+l = t 2 Tr(An Bn) - 2t  2. + 2 

(10)-(13) cannot be fulfilled. Let us first recall 

(14) 

(15) 

and 

Indeed, 

then 
A B B A  - B A A B  = # ' T  

A B B A  - B A A B  = t ( A B A  - B A B )  - -  A 2 + B 2 

= t ( A B A  - B A B )  -:  tA  + t B  

A B A  - B A B  = A ( A  - # T ) A  - (A  - # T )  A ( A  - # T )  

= - # A T A  + # T A  2 + # A Z T  - # 2 T A T  

= - # A T A  + # t T A  + # t A T -  # 2 T A T -  2 # T  

(17) 

(18) 

(19) 

Proof. Equation (14) follows immediately from the definitions 
(6)-(9). Equation (15) is well known and can be obtained by taking the 
trace of Eq. (8) and using that A. and B n satisfy their characteristic equa- 
tion. Equation (16) is true for n = 0 with #o = q l -  qo; then by recursion we 
have to prove that if two unimodular 2 �9 2 matrices A and B satisfy 

A = B + # T  

Tr A = Tr B = t 

where f161 
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Since A and B are unimodular, we have 

A 2 -  tA + I =O 

B 2 -  tB+ 1 = 0  

that is, 

Thus 

( A -  #T)  2 -  t ( A -  #T) + t =0 

# ( A T +  TA) - t k tT -  #2 _= 0 

and (20), (19), and (18) easily provide the result. 

367 

(20) 

Thus, 

lim t. = 0 (22) 
n ~ o o  

This relation together with (15) and Lemma 2 yields 

lira 2 2 t .# .  = 2 

Remark. In. particular, this implies that l i m . ~  # ] =  +oe. Thus, 
#, r 0 for all n and the first part of Lemma 2 can be set as #n ~ Tr(TA~). 

Then (12) provides 

lira ( A .  - #.  T)  A . u o  = 0 
n ~ o o  

i.e., 

lim ( t , A , u o -  uo-- # , T A , u o ) = O  

(23) 

lim (u2~o., + U 22n+1 ) = tnuo = 0 
n ~ o o  

Lemma 2. #n, as defined in Proposition 1, satisfies 

~] = ~. Tr(TA.)  and Tr (B.A. )  = 2 2 t n - #  - 2  (21) 

ProoL The first relation is obtained by taking the trace of (20) and 
the second ~ne by direct calculation of Tr(B~A~)= T r y ( A , , -  p~T)A,~]. 

We now can resume the proof of the theorem. First, by (10) and (11) 
we have 
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Hence 

l im #.  TA .uo  = - u  o 
n ~ o o  

(24) 

N o w ,  let  us t u rn  o u r  a t t e n t i o n  to  (13):  

2 B . A . B . A .  = B ~ A n ( t . B  . -  1) A .  

= t .  T r ( B . A . )  B . A .  - t .  - t . B . A .  + B,, 

T h u s  (13) y ie lds  

0 =  l ira [ t .  T r ( B . A . )  B . A . u o  + B .uo]  

= lira I t .  Tr (B , ,A . )  B . A . u o - # , , T u o ]  

Afor t ior i ,  we have  

0 - -  l im [ t  2 T r ( B . A . ) B . A . u o - # 2 .  Tuo~ 
n ~ o o  

= lira [ t 2 , ( - # ~ - 2 ) B , A , u o - # ~ T U o ]  

which ,  t a k i n g  in to  a c c o u n t  L e m m a  2 a n d  (23), gives T u o = 0 ,  a c o n t r a d i c -  
t ion.  
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